Harmonic Resonance Theory

نویسنده

  • Steven Lehar
چکیده

The conventional view of neuroscience, known as the neuron doctrine, is based on the assumption that neurocomputation involves discrete signals communicated along fixed transmission lines between discrete computational elements. This concept is shown to be inadequate to account for invariance in recognition, as well as for the holistic global aspects of perception identified by Gestalt theory. A Harmonic Resonance theory is presented as an alternative paradigm of neurocomputation, that exhibits both the property of invariance, and the emergent Gestalt properties of perception, not as special mechanisms contrived to achieve those properties, but as natural properties of the resonance itself.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Analysis of a Nonlinear System with a Nonlinear Absorber under the Primary and Super-harmonic Resonances (TECHNICAL NOTE)

Abstract   In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress the primary and super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear absorber, under the primary and super-harmonic resonances is investigated. The stiffnesses of the main system and the absorber are cubically nonlinear and the dampers are linear. M...

متن کامل

The analysis of a Beam Made of Physical Nonlinear Material on Elastic Foundation Under a Harmonic Load

  ABSTRACT: A prismatic beam made of a behaviorally nonlinear material situated on nonlinear elastic foundation is analyzed under a moving harmonic load moving with a known velocity. The vibration equation of motion    is derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculat...

متن کامل

Physical Nonlinear Analysis of a Beam Under Moving Harmonic Load

A prismatic beam made of a behaviorally nonlinear material is analyzed under aharmonic load moving with a known velocity. The vibration equation of motion is derived usingHamilton principle and Euler-Lagrange Equation. The amplitude of vibration, circular frequency,bending moment, stress and deflection of the beam can be calculated by the presented solution.Considering the response of the beam,...

متن کامل

Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory explains this as phase matching between a sideband in the broadband pump to its second harmonic. Howeve...

متن کامل

Localized and propagating surface plasmon resonances in aperture-based third harmonic generation.

We investigate the influence of localized and propagating surface plasmons on third harmonic generation from rectangular apertures in metal films. We designed optimal aperture array structures by using finite-difference time-domain simulations with nonlinear scattering theory. From this design space, we fabricated and measured the third harmonic in the region of maximal performance. We find the...

متن کامل

Dynamic Response of an Axially Moving Viscoelastic Timoshenko Beam

In this paper, the dynamic response of an axially moving viscoelastic beam with simple supports is calculated analytically based on Timoshenko theory. The beam material property is separated to shear and bulk effects. It is assumed that the beam is incompressible in bulk and viscoelastic in shear, which obeys the standard linear model with the material time derivative. The axial speed is charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000